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" Introduction

*The Global Exploration Roadmap

*The NRC Report — Pathways to Exploration
= SLS Configurations

= ARM

* Cislunar Habitat

* Payloads to Lunar Surface

= Mars Surface

= Final Thoughts
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From the GER Mission Scenario. 3" " |

= Ultimate objective is Mars

= Significant precursor activities necessary to prepare
required systems

= Several interim destinations are possible

*|SS role in shaping technical basis and managerial model

= Strong partnership between human and robotic exploration
programs

" International partners are prepared for and require key
mission critical roles
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International Space Station

General Research and Exploration
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Mote: IS5 pariner agencies have agreed to use the 1SS until at least 2020.

Commercial or Government Low-Earth Orbit Platforms and Missions
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Possible Strategy for Architecture Pathways
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ISS Assembly and Operations
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Mind the Gaps

Current NASA Human Spaceflight plan
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The Future of Human Space Exploration
NASA’s Building Blocks to Mars

U.S. companies
provide
affordable
access to low
Earth orbit

& /,/
Mastering the ',5,/
fundamentals . &
aboard the y The next step: travelir‘\/g

2 Inter national beyond low-Earth orbit with
. Mspace Statio the Space Launch System :
| rocket and Orion crew &
capsule

Missions: 6 to 12 months Missions: 1 month up to 12 months Missions: 2 to 3 years
Return: hours Return: days Return: months

Earth Reliant Proving Ground Earth Independent



EVOLVABLE .MARS CAMPAIGN

A Pathways Approach to Exploration

EARTH DEPENDENT - PROVING GROUND - EARTH INDEPENDENT
N = ’
Spae St

Astoroid
Redirect Vehicle

Space Launch
System (5L5)

sl configuration

wolved configuration

THE TRADE SPACE - S

Across the | Solar Electric Propulsion  In-Situ Resource Utilization (ISRU) » Robotic Precursors
Board | Human/Robotic Interactions ¢ Partnership Coordination » Exploration and Science Activities

Cis-lunar | » Deep-space testing and autonomous ~ Mars Vicinity | * Split versus monolithic habitat
o *‘ Trades | operations Trades |« Cargo pre-deployment
AR : « Extensibility to Mars : » Mars Phobos/Deimos activities
* Mars system staging/refurbishment » Entry descent and landing concepts

point and trajectory analyses « Transportation technologies/trajectory analyses




“.”The Next Step Beyond ISS

— Crew tended habitat in cis-lunar space
= Builds off of the Asteroid redirect mission and ISS
—Allows for further study of gravity assist trajectory operations
—Builds off of ISS life support with less earth support
—Enables international partner and commercial lunar surface
activities
—Develops incremental risk management concepts to be
developed and accepted
—EXxposure to galactic cosmic background radiation
= Allows for Mars operational strategies to be developed

14
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Space Launch System (SLS) is the most
powerful rocket ever built and provides

a critical heavy-lift launch capability
enabling diverse deep space missions. The
exploration class vehicle launches larger
payloads farther in our solar system, faster
than ever before.




SLS Configurations and Capability:

SLS is the first rocket and launch system in history capable of powering humans,
habitats and space systems beyond our moon and into deep space.

Launch Vehicle Lift Capabilities The vehicle’s 5 m to
140 %56 10 m fairing allows
Paylaad (matriciions) fo: utilization of existing

B Low Earth Orbit {LEO)

systems which reduces

development risks, size

limitations and costs. SLS
300 lift capacity and superior
performance shortens
mission travel time.

120 ~— - 360

m Geostationary Transfer Orbit (GTO)
M Lunar Transfer

100 ® Mars Transfer Y
\

80 ~ 240

city (metric tons)

Enhanced capabilities
enable a myriad of
missions including human
exploration, planetary
science, astrophysics,

60 heliophysics, planetary
defense and commercial

= space exploration
Atlas V Delta IV Heavy SLS Initial SLS Intermediate SLS Evolved endeavors_
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Most Capable U.S. Launch Vehicle
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EM-2: Orion with EAM to 71,000km D

= Orion with EAM

— Exploration Augmentation Module (EAM)

= Cygnus-based bus concept
— Larger arrays

= “Node-like” structure

— Current mission design assumes MSA2 &
PAF are included in TLI mass
= Orion docks to EAM after both separate

— Orion SM performs all maneuvers into DRO
while docked to EAM

— EAM performs station keeping after Orion
departure

|
Bl
|
|
|
|
'I
|
! |
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EM-2: Orion with EAM to 71,000km-BRO™"

*TLI performance:
edV =2,707 m/s
« EUS propellant used = 52,139 kg
*Margin of 3,874.3 kg (56,013.3 — 52,139)
* TLI performed assuming MSA2 & PAF adapter mass
 Jettison of EUS, PAF, MSA2 performed after TLI complete
» Payload mass delivered:

*Orion SLS Performance
CM @ 10,387 kg suggests that EAM
*SM Inert @ 6,857.6 kg mass could be up to
*SM Prop @ 8,602.4 kg 12,000Kg
*Payload

*Assumed a 10,000 kg EAM payload (total)

* Fly-By Target (includes 10t payload):

*Orion Impulsive

«dV: 166 m/s

*Prop Used: 1,548.4 kg
* DRO Insertion at 71,000 km (includes 10t payload)

*Orion Impulsive

«dV: 120 m/s

*Prop Used: 1,072.8 kg

21






Comparison of Orion and EAM

Capability m EAM + Orion

Exobody Interaction
» Characterize geology and topography at destinations and collect samples \/ \/
* Test tools and technologies to extract, process, and utilize resources

Science ‘/ ‘/
* Earth observation, heliophysics, and astrophysics and other applied research
Crew Health
* Evaluate human health and risk mitigation in the deep space environment \/ \/
* Test radiation countermeasures and mitigation technologies and strategies
* Monitor and predict radiation
Spacecraft Systems and Operations
* Space power generation and storage
* High-performance mobility and extravehicular activity capabilities
. ﬁztonomqus robots to sup!olement c.r.e\_/v activities Partial v
* Advanced in-space propulsion capabilities
* Automated rendezvous and docking and on-orbit assembly capabilities
* Space communications and navigation capabilities
* Protocols for deep space operations at a large distance from Earth
Cooperation

* Opportunities for integrating commercial elements

* Opportunities for international space agency cooperation
Extend Orion mission duration in translunar space

Long duration habitability in deep space

Provide a local abort destination for Orion missions

AN NI NI NN

Extensible architecture for future exploration missions

Copyright © 2010 Boeing. All rights reserved.



EM-3: Orion with Asteroid Retrieval Vebhi

= Orion with ARV

— Asteroid Retrieval vehicle (ARV)
= Lunar fly-by direct to Asteroid
= Ballistic trajectory to asteroid

— Orion mission to EAM
= Longer duration stay (2.5 revs-35 days)?
* Preps for next mission
= Lunar sample return?

.....

Copyright © 2010 Boeing. All rights reserved.
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Asteroid Exploration Module

= Crew operations at a redirected asteroid could
be significantly enhanced by providing
additional systems and EVA capabilities beyond
those available from Orion only missions.

" Placing an Asteroid Exploration Module (AEM)
at the redirected asteroid would :

— Extend mission duration — Reduce EVA and
consumables mass requirements on Orion

— Increase capability — Supply additional EVA
functions and crew volume

— Reduce risk - Provide an abort location for Orion

Copyright © 2010 Boeing. All rights reserved.



Risk Reduction for Exploration

= EAM increases science return of the Asteroid Redirect Mission

= EAM demonstrates many core capabilities needed for deep space

missions
— Electric propulsion

— EVA
— Deep space navigation and communications

— Long duration operations beyond low earth orbit
— Commercial/international interaction
— Long duration radiation countermeasures and mitigation

= EAM benefits Exploration as a residual asset

Copyright © 2010 Boeing. All rights reserved.



EM-4: Orion with Robotic Lander

= Orion with Lander

Lander derived from Morpheus

= Lander injects into a lunar phasing orbit

= Target Schrodinger Basin on Lunar farside (example)
» Phase to time landing at the beginning of the lunar day
» Lander Payload: Ascent Vehicle and option for Rover

= Sample returned to crew at the end of the Lunar day

— Orion mission to EAM
= Longer duration stay (3.5 revs-50 days)?
= Farside comm considerations

= Several options for sample retrieval:
= OSCAR integrated into EAM
= Grapple arm on EAM; EVA sample retrieval
= NDS for ascent vehicle; EVA sample retrieval
= NDS ascent (pressurized ); IVA sample retrieval

Copyright © 2010 Boeing. All rights reserved.



Moonrise Mission
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Sample Return Lander

Lander Summary Table

Description Morpheus Hosted
Lander

Engine Thrust 22,000 N 22,000 N
Propellant LOX/CHA4 LOX/CHA4
Specific Impulse 321 321

(Isp)

Propellant Mass 2,900 kg 5,900 kg
Dry Mass 1,100 kg 2,600 kg
Payload 500 kg 1,500 kg
Diameter 3.7m 55m
Height 3.7m 55m

Total Est. Mass 4,500 kg 10,000 kg

30
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Sample Return Example — Schrodinger-

Crater

*Why Schrddinger?
sLarge Impact Crater Within South Pole-
Aitken Basin
Lat: 75.0°S, Long: 132.4°E, Main
ring diam.: 320 km, Depth: 4.8 km

«Sample return from SPA high priority

from 2012 NRC Decadal Survey

*Meets many goals of NRC 2007 Study

*Access to Amundsen and Shackelton

*ISRU Potential
sLunar regolith
*Pyroclastic deposits
*Polar Volatiles?

*Many other prospective landing sites
*Ex: 50 Constellation regions of
interest
*Recognition that target would be
selected with community input

Limit of Direct to Earth Communication |

SPA Image: LRO-LOLA/NASA GSFC SVS
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Sample Return Example — Schrodlnger‘

Crater con’t

Payload
Lander with Ascent Vehicle
Long lived teleoperated prospecting rover with sample caching mechanism
(Find, Characterize, Document, Return Samples)
Model payload
Bit Stceve Assembly Caching mechanism (modeled after Mars 2020)

Each core D rl I I

Eacl hbtpl ced in:

s | Mee Mineralogy
g» \ X-Ray Diffraction
Multispectral (UV-VIS-NIR) reflectance
Aty spectrometer
Elemental Abundance
Gamma-Ray spectrometer
Laser-induced Breakdown Spectroscopy
(LIBS)
Lunar Environment
Magnetometer
Handlens camera
Electrical charge detection
Ability to traverse beyond Schrddinger when primary mission complete
Amundsen
Shackleton
Rover could be modeled after Curiosity

Bit Assembly

Bit

Break-off tube

. Qrbi(ing Sample

32
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Evolved gateway with SPM




L unar Surface Mission

SLS Lift Capacity | 45t to EML2

Lunar Surface Mission

Mission Objective
Launch astronauts and a reusable lunar lander to the moon’s
surface

Mission Rationale

Unlike Earth, the moon remains largely unchanged since
the formation of the solar system. Through study of our only
natural satellite, scientists can look billions of years into the
past for geologic clues while engineers can test systems
necessary for future Mars missions. Lunar exploration
challenges strengthen international partnerships critical to
ambitious deep space endeavors.

SLS Capabilities

SLS enables human return to the moon. The intermediate
SLS capability allows both crew and cargo to fly to translunar
orbit at the same time which will simplify mission design and
reduce launch costs.

GLOBAL COLLABORATION | HUMAN EXPLORATION




e =
;

Defense, Space . 3

)
RN
b

)

[N
& ll' [}
[N l’l'
NN

'll.villf'll /)
iy "I"'I!II"I RN




fas




On the Moon




Reusable Lander
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On Mars



Deep Space Habitat: Bigelow BA

Deep Space Habitat: Bigelow BA 330

Mission Objective
Deliver expandable BA 330 module to cislunar space

Mission Rationale

SLS supports commercial launch requirements and operations
enabling a deep space human presence while extending Orion
mission duration. The BA 330 is a stand-alone, self-sufficient
module with crew support necessary to sustain long duration
human habitation and may serve as a base element for future
= N / expansion. It can house up to six people on a long-term basis.

i |
=l

L L0 SLS Capabilities

1 — | SLS is the only launch vehicle capable of delivering the BA
330 to EML2. The heavy-lift vehicle will transport the habitation
> module beyond the moon and back to cislunar space via a
-:I § I low-energy transfer that reduces required propellant mass.
E‘\ SLS mass margin allows additional consumables, radiation

— — protection or a secondary payload.
- e

SLS Lift Capacity | 25t to EML2 PUBLIC-PRIVATE PARTNERSHIPS
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International Cooperation

* ISS has established a firm basis for a vibrant exploration program with a
proven management model and proven existing designs

» A Deep Space capability based on ISS technology provides flexibility and is

an enabling capability for key cost-reducing strategies:
* Mobility within the libration system
* Reuse of expensive spaceflight hardware
» Base for assembly of complex, deep space mission systems

* International collaboration has been proven effective on ISS and could be

improved and expanded for exploration
*Embrace the International Space Exploration Coordination Group (ISECG) Global
Exploration Roadmap (GER)
*Apply the lessons learned from the International Space Station program and the
experiences of the current partnership
«Strong coordinated support from the associated transportation programs (Shuttle,
Soyuz, Arianne, H2B)
International partnership with strong political support
«Adequate funding to accomplish the objective
*Agreements on hardware/software interface and construction standards

46
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Questions?




